
c8p33-both
With the help of the definition of force as the product of mass and acceleration it seems possible, indeed, to derive the parallelogram of forces from that of accelerations in a purely logical manner. For it is necessary only to extend all sides of an a parallelogram by means of the same factor m in order to turn it into an F parallelogram. A single geometrical figure on paper can represent both cases, since only the scale needs to be altered in order that the same geometrical length should represent at one time the magnitude a and on another occasion ma. It is in this way that present-day scientific thought keeps itself convinced that the parallelogram of forces follows with logical evidence from the parallelogram of accelerations, and that the discovery of the former is therefore due to a purely mental process.