c17p33-both chapter_17_merge_container

c17p33-both

To speak of an independently existing space within which light could move forward like a physical body, is, after what we have learnt about space, altogether forbidden. For space in its relevant structure is itself but a result of a particular co-ordination of levity and gravity or, in other words, of Light and Dark. What we found earlier about the qualities of the two polar spaces now leads us to conceive of them as representative of two limiting conditions of velocity: absolute contraction representing zero velocity; absolute expansion, infinite velocity (each in its own way a state of 'rest'). Thus any motion with finite velocity is a mean between these two extremes, and as such the result of a particular co-ordination of levity and gravity. This makes it evident that to speak of a velocity taking its course in space, whether with reference to light or to a physical body in motion, is something entirely unreal.
c17p34-both chapter_17_merge_container

c17p34-both

Let us now see what we are really told by the number 186,000 miles a second, as the measure of the speed with which a light-impulse establishes itself spatially. In the preceding chapter we learnt that the earth's field of gravity offers a definite resistance to our visual ray. What is true for the inner light holds good equally for the outer light. Using an image from another dynamic stratum of nature we can say that light, while appearing within the field of gravity, 'rubs' itself on this. On the magnitude of this friction depends the velocity with which a light-impulse establishes itself in the medium of the resisting gravity. Whereas light itself as a manifestation of levity possesses infinite velocity, this is forced down to the known finite measure by the resistance of the earth's field of gravity. Thus the speed of light which has been measured by observers such as Fizeau and Foucault reveals itself as a function of the gravitational constant of the earth, and hence has validity for this sphere only.1 The same is true for Roemer's and Bradley's observations, none of which, after what we have stated earlier, contradicts this result. On the contrary, seen from this viewpoint, Roemer's discovery of the light's travelling with finite speed within the cosmic realm marked by the earth's orbit provides an important insight into the dynamic conditions of this realm.
*
c17p35-both chapter_17_merge_container

c17p35-both

Among the experiments undertaken with the aim of establishing the properties of the propagation of light by direct measurements, quoted earlier, we mentioned the Michelson-Morley experiment as having a special bearing on Einstein's conceptual edifice. It is the one which has formed the foundation of that (earlier) part of Einstein's theory which he himself called the Special Theory of Relativity. Let us see what becomes of this foundation - and with it the conceptual edifice erected upon it - when we examine it against the background of what we have found to be the true nature of the so-called velocity of light.
c17p36-both chapter_17_merge_container

c17p36-both

It is generally known that modern ideas of light seemed to call for something (Huygens's 'certain substance') to act as bearer of the movement attributed to light. This led to the conception of an imponderable agency capable of certain movements, and to denote this agency the Greek word ether was borrowed. (How this word can be used again to-day in conformity with its actual significance will be shown in the further course of our discussions.) Nevertheless, all endeavours to find in the existence of such an ether a means of explaining wide fields of natural phenomena were disappointed. For the more exact concepts one tried to form of the characteristics of this ether, the greater the contradictions became.
c17p37-both chapter_17_merge_container

c17p37-both

One such decisive contradiction arose when optical means were used to discover whether the ether was something absolutely at rest in space, through which physical bodies moved freely, or whether it shared in their movement. Experiments made by Fizeau with running water seemed to prove the one view, those of Michelson and Morley, involving the movement of the earth, the other view. In the celebrated Michelson-Morley experiment the velocity of light was shown to be the same, in whatever direction, relative to the earth's own motion, it was measured. This apparent proof of the absolute constancy of light-velocity - which seemed, however, to contradict other observations - induced Einstein to do away with the whole assumption of a bearer of the movement underlying light, whether the bearer were supposed to be at rest or itself in motion. Instead, he divested the concepts of space and time, from which that of velocity is usually derived, of the absoluteness hitherto attributed to them, with the result that in his theory time has come to be conceived as part of a four-dimensional 'space-time continuum'.
c17p38-both chapter_17_merge_container

c17p38-both

In reality the Michelson-Morley experiment presents no problem requiring such labours as those of Einstein for its solution. For by this experiment nothing is proved beyond what can in any event be known - namely, that the velocity of the propagation of a light-impulse is constant in all directions, so long as the measuring is confined to regions where the density of terrestrial space is more or less the same. With the realization of this truth, however, Einstein's Special Theory loses its entire foundation. All that remains to be said about it is that it was a splendid endeavour to solve a problem which, rightly considered, does not exist.1
*
c17p39-both chapter_17_merge_container

c17p39-both

Now that we have realized that it is inadmissible to speak of light as consisting of single rays, or to ascribe to it a finite velocity, the concept of the refraction of light, as understood by optics to-day and employed for the explanation of the spectrum, also becomes untenable. Let us find out what we must put in its place.
c17p41-both chapter_17_merge_container

c17p41-both

consists in the fact, surprising at first sight, that an object, such as a coin, which lies at the bottom of a vessel hidden from an observer by the rim, becomes visible when the vessel is filled with water. Modern optics has explained this by assuming that from the separate points of the floor of the vessel light-rays go out to all sides, one ray falling in the direction of the eye of the observer. Hence, because of the positions of eye and intercepting rim there are a number of points from which no rays can reach the eye. One such point is represented by the coin (P in Fig. 12a). Now if the vessel is filled with water, light-rays emerging from it are held to be refracted, so that rays from the points hitherto invisible also meet the eye, which is still in its original position. The eye itself is not conscious of this 'break' in the light-rays,