chapter_20_merge_container

c20p46-both

In the introductory part of the last chapter we said that we have the right to employ results of investigation carried out by higher faculties of spiritual perception without contradicting our principle of seeking to understand the phenomenal world by reading it, provided our doing so helps to enhance our own reading activity, and provided it can be shown that the acquisition of the higher faculties of perception is a direct continuation of the training we have to apply to our mind and senses to make them capable of such reading. As regards the forces of astral character, the first of these two conditions has been fulfilled by the observations we have already worked through in this chapter. We have still to show that the second condition is equally fulfilled.
chapter_20_merge_container

c20p47-both

The faculty of the mind which permits direct investigation of the astral realm was called (spiritual) Inspiration by Rudolf Steiner, who thereby restored to this term, also, its proper meaning. We have already indicated that this faculty resides in the sense of hearing in the same way that the faculty of Imagination - as we have found - resides in the sense of seeing. In order to understand why it is this particular sense which comes into consideration here, we have to consider that the phenomena through which the astral world manifests most directly are all of a rhythmic nature. Now, the sense through which our soul penetrates with direct experience into some outer rhythmic activity is the sense of hearing, our aural perceptions being conveyed by certain rhythmic movements of the air. In what follows we shall see how the study of both the outer acoustic phenomena and our own psycho-physical make-up in the region of the acoustic sense, leads to an understanding of the nature of Inspiration and of how it can be trained.
*
chapter_20_merge_container

c20p48-both

Among all our sense-perceptions, sound is unique in making itself perceptible in two quite different ways - via the ear as a direct sense experience and via the eye (potentially also via the senses of touch and movement) in the form of certain mechanical movements, such as those of a string or a tuning fork. Hence the world-spectator, as soon as he began to investigate acoustic phenomena scientifically, found himself in a unique position. In all other fields of perception, with the exception of the purely mechanical processes, the transition to non-stereoscopic colourless observation had the effect that the world-content of the naive consciousness simply ceased to exist, leaving the ensuing hiatus to be filled in by a pattern of imagined kinematic happenings - for example, colour by 'ether'-vibrations, heat by molecular movements. Not so in the sphere of acoustics. For here a part of the entire event, on account of its genuine kinetic character, remains a content of actual observation.
chapter_20_merge_container

c20p49-both

In consequence, the science of acoustics became for the scientific mind of man a model of the required division between the 'subjective' (that is, for scientific considerations non-existent) and the 'objective' (that is, the purely kinematic) part of observation. The field of aural perception seemed to justify the procedure of collecting a mass of phenomena, stripped of all that is experienced by man's soul in meeting them, and of assembling them under a purely abstract concept, 'sound'.
chapter_20_merge_container

c20p50-both

Professor Heisenberg, in his lecture (quoted at the beginning of Chapter II) on the way in which the scientific interrogation of nature has deliberately limited itself, draws attention to the fact that a full knowledge of the science of optics in its present form might be acquired merely through theoretical study by one born blind, yet without his ever getting to know what light is. Heisenberg could, of course, have said the same of the science of acoustics in regard to one born deaf. But we can go a step further by asking how far a deaf and a blind person could get towards establishing the respective science. The answer must be that, whereas the person lacking sight would not of himself be in a position to establish a science of optics, it would be well within the scope of the deaf man to establish a science of acoustics. For all the processes essential to a physical acoustics are accessible to the eye and other senses.
chapter_20_merge_container

c20p51-both

In order to make our experience of hearing a finger-post pointing the way to an understanding of the faculty of Inspiration innate in man, we must first of all seek to transform acoustics from a 'deaf into a 'hearing' science, just as Goethe turned the theory of colour from a colour-blind into a colour-seeing science.
*
chapter_20_merge_container

c20p52-both

Following our procedure in the case of optics, we select from the total field of acoustic phenomena a defined realm specially suited to our purpose. As it was then the spectrum, so it will be now the so-called quality of sound, or tone-colour.
chapter_20_merge_container

c20p53-both

By this term in acoustics is understood a property possessed by sound apart from pitch and volume, and dependent on the nature of the source from which a tone is derived. It is the tone-colour by which the tone of a violin, for instance, is distinguished from a tone of equal intensity and pitch produced by a flute. Similarly, two musical instruments of the same kind are distinguished from each other by tone-colour.
chapter_20_merge_container

c20p54-both

Tone-colour plays a specially significant part in human and animal voices. Not only has each individual voice its unique colour, but the colour varies in one and the same person or animal, according to the prevailing mood. Moreover, by uttering the various vowels of his language, man is able to impart varying colour to the sounds of his speech. For the difference we experience when a tone is sung on the vowel 'a' or the vowel 'e', etc., derives from the particular colour given by the vowel to that tone.