chapter_6_merge_container

c6p120-both

6 Wordsworth, with all his limitations, had a real affinity with Goethe in his view of nature. Mr. Norman Lacey gives some indication of this in his recent book, Wordsworth's View of Nature.

chapter_6_merge_container

c6p122-both

8 The difference in spelling between the prose and poetry excerpts arises from the fact that whereas we can draw on Miss Wade's new edition of the poems for Traherne's original spelling, we have as yet only Dobell's edition of the Centuries, in which the spelling is modernized.

chapter_10_text

c10p11

That Ruskin was as much on the alert in regard to this theory as he was in regard to Newton’s theory of gravitation, is shown by the following utterance from his The Queen of the Air. Obviously stirred by Tyndall’s newly published treatise, Heat as a Mode of Motion, Ruskin felt the need to criticize the endeavour of contemporary science ‘to simplify the various forms of energy more and more into modes of one force, or finally into mere motion, communicable in various states, but not destructible’, by declaring that he would himself ‘like better in order of thought3 to consider motion as a mode of heat than heat as a mode of motion’.

chapter_10_text

c10p12

These words of Ruskin touch also on the law of conservation of energy, of which we said that it also called for a preliminary examination. What we now have to find out is the factual basis on which this law rests.

*
chapter_10_text

c10p13

The conception of the law of conservation of energy arose from the discovery of the constant numerical relation between heat and mechanical work, known as the mechanical equivalent of heat. This discovery was made at about the same time by Joule in England and J. R. Mayer in Germany, although by entirely different routes. Joule, a brewer, was a man of practical bent. Trained by Dalton, the founder of the atomic theory, in experimental research, he continued Rumford’s and Davy’s researches which they had undertaken to prove that heat is not, as it was for a time believed to be, a ponderable substance, but an imponderable agent. As a starting-point he took the heating effect of electric currents. The fact that these could be generated by turning a machine, that is, by the expenditure of mechanical energy, gave him the idea of determining the amount of work done by the machine and then comparing this with the amount of heat generated by the current. A number of ingenious experiments enabled him to determine with increasing exactitude the numerical relation between work and heat, as well as to establish the absolute constancy of the relation.