chapter_12_text

c12p2

With the introduction, in Chapter X, of the peripheral type of force-field which appertains to levity as the usual central one does to gravity, we are compelled to revise our conception of space. For in a space of a kind we are accustomed to conceive, that is, the three-dimensional, Euclidean space, the existence of such a field with its characteristic of increasing in strength in the outward direction is a paradox, contrary to mathematical logic.

chapter_12_merge_container

c12p2-both

With the introduction, in Chapter X, of the peripheral type of force-field which appertains to levity as the usual central one does to gravity, we are compelled to revise our conception of space. For in a space of a kind we are accustomed to conceive, that is, the three-dimensional, Euclidean space, the existence of such a field with its characteristic of increasing in strength in the outward direction is a paradox, contrary to mathematical logic.
chapter_12_text

c12p3

This task, which in view of our further observations of the actions of the levity-gravity polarity in nature we must now tackle, is, however, by no means insoluble. For in modern mathematics thought-forms are already present which make it possible to develop a space-concept adequate to levity. As referred to in Chapter I, it was Rudolf Steiner who first pointed to the significance in this respect of the branch of modern mathematics known as Projective Geometry. He showed that Projective Geometry, if rightly used, carries over the mind from the customary abstract to a new concrete treatment of mathematical concepts. The following example will serve to explain, to start with, what we mean by saying that mathematics has hitherto been used abstractly.

chapter_12_merge_container

c12p3-both

This task, which in view of our further observations of the actions of the levity-gravity polarity in nature we must now tackle, is, however, by no means insoluble. For in modern mathematics thought-forms are already present which make it possible to develop a space-concept adequate to levity. As referred to in Chapter I, it was Rudolf Steiner who first pointed to the significance in this respect of the branch of modern mathematics known as Projective Geometry. He showed that Projective Geometry, if rightly used, carries over the mind from the customary abstract to a new concrete treatment of mathematical concepts. The following example will serve to explain, to start with, what we mean by saying that mathematics has hitherto been used abstractly.