chapter_20_text

c20p55

Among the discoveries of the last century in the realm of acoustics, there is one which especially helped to establish a purely kinematic conception of sound. Helmholtz showed that tones which to our ears seem to have a clear and definite pitch may be split up by a series of resonators into a number of different tones, each of them sounding at a different pitch. The lowest of these has the pitch which our ears attach to the entire tone. Thus in any ordinary tone there may be distinguished a ‘fundamental’ tone and a series of ‘overtones’. Helmholtz further showed that the particular series of overtones into which a tone can be resolved is responsible for the colour of that tone as a whole. Naturally, this meant for the prevailing mode of thinking that the experience of the colour of a tone had to be interpreted as the effect of a kind of acoustical adding together of a number of single tone perceptions (very much as Newton had interpreted ‘white’ light as the outcome of an optical adding together of a certain number of single colour perceptions).

chapter_20_text

c20p56

The picture becomes different if we apply to the aural experience Goethe’s theorem that, in so far as we are deluded, it is not by our senses but by our own reasoning. For we then realize that sounds never occur of themselves without some tone-colour, whilst physically ‘pure’ tones – those that represent simple harmonic motions – exist only as an artificial laboratory product. The colour of a tone, therefore, is an integral part of it, and must not be conceived of as an additional attribute resulting from a summing up of a number of colourless tone experiences.

chapter_20_text

c20p57

Further, if we compare our experiences of the two kinds of tone, they tell us that through the quality or colour of the natural tone something of a soul-nature, pleasant or unpleasant, speaks to us, whereas ‘pure’ tones have a soulless character.

chapter_20_text

c20p58

Resolving normal tones by Helmholtz’s method (useful as it is for certain purposes) amounts to something like dissecting a living, ensouled organism into its members; only the parts of the corpse

chapter_20_text

c20p62

This picture of the complete happenings during an acoustic event enables us to understand how such a process can be the vehicle for conveying certain astral impulses in such a way that, when met by them, we grow aware of them in the form of a direct sensation. Taking as a model the expression ‘transparent’ for the perviousness of a substance to light, we may say that the air, when in a state of acoustic vibration, becomes ‘trans-audient’ for astral impulses, and that the nature of these vibrations determines which particular impulses are let through.

chapter_20_text

c20p63

What we have here found to be the true role of the kinetic part of the acoustic process applies equally to sounds which are emitted by living beings, and to those that arise when lifeless material is set mechanically in motion, as in the case of ordinary noises or the musical production of tone. There is only this difference: in the first instance the vibrations of the sound-producing organs have their origin in the activity of the astral part of the living being, and it is this activity which comes to the recipient’s direct experience in the form of aural impressions; in the second instance the air, by being brought externally into a state of vibration, exerts a kind of suction on the astral realm which pervades the air, with the result that parts of this realm become physically audible. For we are constantly surrounded by supersensible sounds, and the state of motion of the air determines which of them become perceptible to us in our present state of consciousness.

chapter_20_text

c20p64

At this point our mind turns to a happening in the macrotelluric sphere of the earth, already considered in another connexion, which now assumes the significance of an ur-phenomenon revealing the astral generation of sound. This is the thunder-storm, constituted for our external perception by the two events: lightning and thunder.

chapter_20_text

c20p65

Remembering what we have found earlier (Chapter X) to be the nature of lightning, we are now in a position to say: a supraterrestrial astral impulse obtains control of the earth’s etheric and physical spheres of force in such a way that etheric substance is thrown into the condition of space-bound physical matter. This substance is converted by stages from the state of light and heat via that of air into the liquid and, in certain cases, into the solid state (hail). To this we now add that, while in lightning the first effect of the etheric-physical interference of the astral impulse appears before our eyes, our ears give us direct awareness of this impulse in the form of thunder. It is this fact which accounts for the awe-inspiring character of thunderstorms.

*
chapter_20_text

c20p66

The picture we have thus received of the outer part of the acoustic process has a counterpart in the processes inside the organ of hearing. Hearing, like seeing, depends upon the co-operation of both poles of the human organism-nerve and blood. In the case of hearing, however, they play a reversed role. In the eye, the primary effect of light-impressions is on the nervous part; a secondary response to them comes from the blood organization. In the ear, the receptive organ for the astral impulses pressing in upon it is a part which belongs to the body’s limb system, while it is the nervous organization which functions as the organ of response. For in the ear the sound-waves are first of all taken over by the so-called ossicles, three small bones in the middle ear which, when examined with the Goethean eye, appear to be a complete metamorphosis of ah arm or a leg. They are instrumental in transferring the outer acoustic movements to the fluid contained in the inner ear, whence these are communicated to the entire fluid system of the body and lastly to the muscular system.9 We shall speak of this in detail later on. Let it be stated here that the peculiar role played by the larynx in hearing, already referred to by us in Chapter XVI, is one of the symptoms which tells of the participation of the muscular system in the internal acoustic process.