c13p57-both
Magnetism is polarized gravity. Hence it has the same characteristic of tending always to maintain an existent condition. In bodies subject to gravity, this tendency reveals itself as their inertia. It is the inertia inherent in magnetism which we employ when using it to generate electricity. The simplest example is when, by interrupting a 'primary current', we induce a 'secondary current' in a neighbouring circuit. By the sudden alteration of the electric condition on the primary side, the magnetic condition of the surrounding space is exposed to a sudden corresponding change. Against this the magnetic field 'puts up' a resistance by calling forth, on the secondary side, an electrical process of such direction and strength that the entire magnetic condition remains first unaltered and then, instead of changing suddenly, undergoes a gradual transformation which ideally needs an infinite time for its accomplishment (asymptotic course of the exponential curve). This principle rules every process of electromagnetic induction, whatever the cause and direction of the change of the magnetic field.