c10p75-both chapter_10_merge_container

c10p75-both

The line of consideration pursued in the last part of this chapter has led us from certain observations in the plant kingdom, concerning the coming into being of ponderable matter from 'nothing', to a corresponding picture of the earth's meteorological sphere. When discussing the plant in this respect we found as an instance 'worth a thousand, bearing all within itself the case of Tillandsia and more particularly the surprising appearance of phosphorus in it. Now, in the meteorological realm it is once more phosphorus which gives us an instance of this kind. For there is the well-known fact of the presence of phosphorus in conspicuous quantities in snow without a source being traceable in the atmosphere whence this substance can have originated in ponderable condition. The phosphorus appearing in snow, therefore, brings before our very eyes the fact that the heights of the atmosphere are a realm of procreation of matter. (In our next chapter we shall learn what it is in phosphorus that makes it play this particular role in both fields of nature. What interests us in the present context is the fact itself.)
*
c10p12-both chapter_10_merge_container

c10p12-both

These words of Ruskin touch also on the law of conservation of energy, of which we said that it also called for a preliminary examination. What we now have to find out is the factual basis on which this law rests.
*
c10p28-both chapter_10_merge_container

c10p28-both

It is essential to realize that all fields dealt with by physical science, the gravitational, electric, magnetic - however much they differ otherwise - have this one characteristic in common, that they have a centre where the field is at its highest intensity, diminishing as the distance from the centre increases. Motion in such a field naturally takes place from regions of lower to those of higher intensity - in other words, it follows the rising potential of the field. This accounts for the tendency of physical masses to arrive at the shortest possible distance between them.
c10p44-both chapter_10_merge_container

c10p44-both

With the help of this conception of the integration of the liquid state within the polarity of gravity and levity, we are now able to draw a picture of the earth which, once obtained, answers many a question left unanswered by current scientific notions, among them the question why the earth's volcanic activity is confined to maritime regions.
c10p60-both chapter_10_merge_container

c10p60-both

The pattern as usually seen is now reversed; the presence of the various elements in the soil no longer appears as the origin of one or another function in the building up of the plant-body, but quite the reverse. The functions appear now as the cause, and the soil-elements as the effect. We may thus recognize the value of the latter as symptoms from which we can read the existence of a healthy connexion between the plant and the corresponding form-creating functions working on it from its surroundings.
c10p76-both chapter_10_merge_container

c10p76-both

The knowledge we have now gained concerning the disappearance and appearance of physical water in the heights of the atmosphere will enable us to shake off one of the most characteristic errors to which the onlooker-consciousness has succumbed in its estimation of nature. This is the interpretation of thunderstorms, and particularly of lightning, which has held sway since the days of Benjamin Franklin.
c10p13-both chapter_10_merge_container

c10p13-both

The conception of the law of conservation of energy arose from the discovery of the constant numerical relation between heat and mechanical work, known as the mechanical equivalent of heat. This discovery was made at about the same time by Joule in England and J. R. Mayer in Germany, although by entirely different routes. Joule, a brewer, was a man of practical bent. Trained by Dalton, the founder of the atomic theory, in experimental research, he continued Rumford's and Davy's researches which they had undertaken to prove that heat is not, as it was for a time believed to be, a ponderable substance, but an imponderable agent. As a starting-point he took the heating effect of electric currents. The fact that these could be generated by turning a machine, that is, by the expenditure of mechanical energy, gave him the idea of determining the amount of work done by the machine and then comparing this with the amount of heat generated by the current. A number of ingenious experiments enabled him to determine with increasing exactitude the numerical relation between work and heat, as well as to establish the absolute constancy of the relation.
c10p29-both chapter_10_merge_container

c10p29-both

It was natural for the modern mind to picture a dynamic condition of the kind just described, that is, one in which the centre and source, as it were, is a point round which the dynamic condition spreads with steadily diminishing strength as the distance from the point grows. For such is the condition of man's head-bound consciousness. The locus from which modern man watches the world is a point within the field of this consciousness, and the intensity with which the world acts on it diminishes with increasing spatial distance from this point. This is the reason why levity was banished from scientific inquiry, and why, when the field-concept was created by the genius of Faraday, it did not occur to anyone that with it the way was opened to comprehend field-types other than the centric one characteristic of gravity and kindred forces. To make use of the field-concept in this other way is one of the tasks we have to undertake if we are to overcome the impasse in which present-day scientific cognition finds itself.
c10p45-both chapter_10_merge_container

c10p45-both

Regarding the distribution of land and water on the earth's surface, we may say that to an observer in cosmic space the earth would not look at all like a solid body. Rather would it appear as a gigantic 'drop' of water, its surface interspersed with solid formations, the continents and other land masses. Moreover, the evidence assembled ever since Professor A. Wegener's first researches suggests that the continents are clod-like formations which 'float' on an underlying viscous substance and are able to move (very slowly) in both the vertical and horizontal directions. The oceanic waters are in fact separated from the viscous substratum by no more than a thin layer of solid earth, a mere skin in comparison with the size of the planet. Further, this 'drop' of liquid which represents the earth is in constant communication with its environment through the perpetual evaporation from the ocean, as well as from every other body of water.
c10p61-both chapter_10_merge_container

c10p61-both

With this reversal of the relationship between cause and effect it is not, however, intended to represent the commonly accepted order of things as entirely incorrect. In the realm of life, cause and effect are not so onesidedly fixed as in the realm of mechanical forces. We may therefore admit that a reverse effect of the soil-elements upon the plant does take place. This is plainly demonstrable in the case of phosphorus which, however, by reason of its appearance in the soil in proportions hardly to be called a mere 'trace', represents a borderline case. What may apply within limits to phosphorus is wholly valid for the trace-elements - namely, that they are playing their essential role while they are themselves about to assume ponderable form.