chapter_12_merge_container

c12p15-both

In the sense of Euclidean geometry, a plane is the sum-total of innumerable single points. To take up a position in a plane, therefore, means to imagine oneself at one point of the plane, with the latter extending around in all directions to infinity. Hence the journey from any point in space to a plane is along a straight line from one point to another. In the case of the plane being at infinity, it would be a journey along a radius of the infinitely large sphere from its centre to a point at its circumference.
chapter_12_merge_container

c12p47-both

In order to find the corresponding morphological polarity in the animal kingdom, we must realize that the animal, by having the main axis of its body in the horizontal direction, has a relationship to the gravity-levity fields of the earth different from those of both man and plant. As a result, the single animal body shows the sphere-radius polarity much less sharply. If we compare the different groups of the animal kingdom, however, we find that the animals, too, bear this polarity as a formative element. The birds represent the spherical (dry, saline) pole; the ruminants the linear (moist, sulphurous) pole. The carnivorous quadrupeds form the intermediary (mercurial) group. As ur-phenomenal types we may name among the birds the eagle, clothed in its dry, silicic plumage, hovering with far-spread wings in the heights of the atmosphere, united with the expanses of space through its far-reaching sight; among the ruminants, the cow, lying heavily on the ground of the earth, given over entirely to the immensely elaborated sulphurous process of its own digestion. Between them comes the lion - the most characteristic animal for the preponderance of heart-and-lung activities in the body, with all the attributes resulting from that.
chapter_12_merge_container

c12p16-both

In projective geometry the operation is of a different character. Just as we arrived at the infinitely large sphere by letting a finite sphere grow, so must we consider any finite sphere as having grown from a sphere with infinitely small extension; that is, from a point. To travel from the point to the infinitely distant plane in the sense of projective geometry, therefore, means that we have first to identify ourselves with the point and 'become' the plane by a process of uniform expansion in all directions.
chapter_12_merge_container

c12p48-both

Within the scope of this book it can only be intimated briefly, but should not be left unmentioned for the sake of those interested in a further pursuit of these lines of thought, that the morphological mean between radius and sphere (corresponding to Mercurius in the alchemical triad) is represented by a geometrical figure known as the 'lemniscate', a particular modification of the so-called Cassinian curves.2
chapter_12_merge_container

c12p17-both

As a result of this we do not arrive at one point in the plane, with the latter extending round us on all sides, but we are present in the plane as a whole everywhere. No point in it can be characterized as having any distance, whether finite or infinite, from us. Nor is there any sense in speaking of the plane itself as being at infinity. For any plane will allow us to identify ourselves with it in this way. And any such plane can be given the character of a plane at infinity by relating it to a point infinitely far away from it (i.e. from us).
chapter_12_merge_container

c12p33-both

A strange extended Orb of Joy
Proceeding from within,
Which did on ev'ry side display
Its force; and being nigh of Kin
To God, did ev'ry way
Dilate its Self ev'n
instantaneously,
Yet an Indivisible Centre stay,
In it surrounding all Eternity.
'Twas not a Sphere;
Yet did appear
One infinite: 'Twas somewhat everywhere.'
chapter_12_merge_container

c12p18-both

Having thus dropped the one-sided conception of infinity, we must look for another characterization of the relationship between a point and a plane which are infinitely distant from one another. This requires, first of all, a proper characterization of Point and Plane in themselves.