chapter_12_merge_container

c12p34-both

Observe the distinct description of how the relation between circumference and centre is inverted by the former becoming itself an 'indivisible centre'. In a space of this kind there is no Here and There, as in Euclidean space, for the consciousness is always and immediately at one with the whole space. Motion is thus quite different from what it is in Euclidean space. Traherne himself italicized the word 'instantaneous', so important did he find this fact. (The quality of instantaneousness - equal from the physical point of view to a velocity of the value âž - will occupy us more closely as a characteristic of the realm of levity when we come to discuss the apparent velocity of light in connexion with our optical studies.)
chapter_12_merge_container

c12p2-both

With the introduction, in Chapter X, of the peripheral type of force-field which appertains to levity as the usual central one does to gravity, we are compelled to revise our conception of space. For in a space of a kind we are accustomed to conceive, that is, the three-dimensional, Euclidean space, the existence of such a field with its characteristic of increasing in strength in the outward direction is a paradox, contrary to mathematical logic.
chapter_12_merge_container

c12p19-both

Conceived dynamically, as projective geometry requires, Point and Plane represent a pair of opposites, the Point standing for utmost contraction, the Plane for utmost expansion. As such, they form a polarity of the first order. Both together constitute Space. Which sort of space this is, depends on the relationship in which they are envisaged. By positing the point as the unit from which to start, and deriving our conception of the plane from the point, we constitute Euclidean space. By starting in the manner described above, with the plane as the unit, and conceiving the point from it, we constitute polar-Euclidean space.
chapter_12_merge_container

c12p35-both

By thus realizing the source in man of the polar-Euclidean thought-forms, we see the discovery of projective geometry in a new light. For it now assumes the significance of yet another historical symptom of the modern re-awakening of man's capacity to remember his prenatal existence.
chapter_12_merge_container

c12p3-both

This task, which in view of our further observations of the actions of the levity-gravity polarity in nature we must now tackle, is, however, by no means insoluble. For in modern mathematics thought-forms are already present which make it possible to develop a space-concept adequate to levity. As referred to in Chapter I, it was Rudolf Steiner who first pointed to the significance in this respect of the branch of modern mathematics known as Projective Geometry. He showed that Projective Geometry, if rightly used, carries over the mind from the customary abstract to a new concrete treatment of mathematical concepts. The following example will serve to explain, to start with, what we mean by saying that mathematics has hitherto been used abstractly.
chapter_12_merge_container

c12p20-both

The realization of the reversibility of the relationship between Point and Plane leads to a conception of Space still free from any specific character. By G. Adams this space has been appositely called archetypal space, or ur-space. Both Euclidean and polar-Euclidean space are particular manifestations of it, their mutual relationship being one of metamorphosis in the Goethean sense.
chapter_12_merge_container

c12p36-both

We know from our previous studies that the concept of polarity is not exhausted by conceiving the world as being constituted by polarities of one order only. Besides primary polarities, there are secondary ones, the outcome of interaction between the primary poles. Having conceived of Point and Plane as a geometrical polarity of the first order, we have therefore to ask what formative elements there are in geometry which represent the corresponding polarity of the second order. The following considerations will show that these are the radius, which arises from the point becoming related to the plane, and the spherically bent surface (for which we have no other name than that again of the sphere), arising from the plane becoming related to the point.
chapter_12_merge_container

c12p4-both

One of the reasons why the world-picture developed by Einstein in his Theory of Relativity deserves to be acknowledged as a step forward in comparison with the picture drawn by classical physics, lies in the fact that the old conception of three-dimensional space as a kind of 'cosmic container', extending in all directions into infinity and filled, as it were, with the content of the physical universe, is replaced by a conception in which the structure of space results from the laws interrelating this content. Our further discussion will show that this indeed is the way along which, to-day, mathematical thought must move in order to cope with universal reality.