chapter_12_text

c12p45

In the plant, just as in man, the morphological polarity coincides with the biological. There is, on the one hand, the process of assimilation (photosynthesis), so characteristic of the leaf. Through this process matter passes over from the aeriform condition into that of numerous separate, characteristically structured solid bodies – the starch grains. Besides this kind of assimilation we have learnt to recognize a higher form which we called ‘spiritual assimilation’. Here, a transition of substance from the domain of levity to that of gravity takes place even more strikingly than in ordinary (physical) assimilation (Chapter X).

chapter_12_text

c12p14

This property of a plane at infinity, however, is really a property of any plane. To realize this, we must widen our conception of infinity by freeing it from a certain one-sidedness still connected with it. This we do by transferring ourselves into the infinite plane and envisaging, not the plane from the point, but the point from the plane. This operation, however, implies something which is not obvious to a mind accustomed to the ordinary ways of mathematical reasoning. It therefore requires special explanation.

chapter_12_text

c12p46

The corresponding process in the linear stalk is one which we may call ‘sublimation’ – again with its extension into ‘spiritual sublimation’. Through this process matter is carried in the upward direction towards ever less ponderable conditions, and finally into the formless state of pure ‘chaos’. By this means the seed is prepared (as we have seen) with the help of the fire-bearing pollen, so that after it has fallen to the ground, it may serve as an all-relating point to which the plant’s Type can direct its activity from the universal circumference.

chapter_12_text

c12p15

In the sense of Euclidean geometry, a plane is the sum-total of innumerable single points. To take up a position in a plane, therefore, means to imagine oneself at one point of the plane, with the latter extending around in all directions to infinity. Hence the journey from any point in space to a plane is along a straight line from one point to another. In the case of the plane being at infinity, it would be a journey along a radius of the infinitely large sphere from its centre to a point at its circumference.

chapter_12_text

c12p47

In order to find the corresponding morphological polarity in the animal kingdom, we must realize that the animal, by having the main axis of its body in the horizontal direction, has a relationship to the gravity-levity fields of the earth different from those of both man and plant. As a result, the single animal body shows the sphere-radius polarity much less sharply. If we compare the different groups of the animal kingdom, however, we find that the animals, too, bear this polarity as a formative element. The birds represent the spherical (dry, saline) pole; the ruminants the linear (moist, sulphurous) pole. The carnivorous quadrupeds form the intermediary (mercurial) group. As ur-phenomenal types we may name among the birds the eagle, clothed in its dry, silicic plumage, hovering with far-spread wings in the heights of the atmosphere, united with the expanses of space through its far-reaching sight; among the ruminants, the cow, lying heavily on the ground of the earth, given over entirely to the immensely elaborated sulphurous process of its own digestion. Between them comes the lion – the most characteristic animal for the preponderance of heart-and-lung activities in the body, with all the attributes resulting from that.

chapter_12_text

c12p16

In projective geometry the operation is of a different character. Just as we arrived at the infinitely large sphere by letting a finite sphere grow, so must we consider any finite sphere as having grown from a sphere with infinitely small extension; that is, from a point. To travel from the point to the infinitely distant plane in the sense of projective geometry, therefore, means that we have first to identify ourselves with the point and ‘become’ the plane by a process of uniform expansion in all directions.

chapter_12_text

c12p48

Within the scope of this book it can only be intimated briefly, but should not be left unmentioned for the sake of those interested in a further pursuit of these lines of thought, that the morphological mean between radius and sphere (corresponding to Mercurius in the alchemical triad) is represented by a geometrical figure known as the ‘lemniscate’, a particular modification of the so-called Cassinian curves.2