chapter_12_text

c12p36

We know from our previous studies that the concept of polarity is not exhausted by conceiving the world as being constituted by polarities of one order only. Besides primary polarities, there are secondary ones, the outcome of interaction between the primary poles. Having conceived of Point and Plane as a geometrical polarity of the first order, we have therefore to ask what formative elements there are in geometry which represent the corresponding polarity of the second order. The following considerations will show that these are the radius, which arises from the point becoming related to the plane, and the spherically bent surface (for which we have no other name than that again of the sphere), arising from the plane becoming related to the point.

chapter_12_text

c12p4

One of the reasons why the world-picture developed by Einstein in his Theory of Relativity deserves to be acknowledged as a step forward in comparison with the picture drawn by classical physics, lies in the fact that the old conception of three-dimensional space as a kind of ‘cosmic container’, extending in all directions into infinity and filled, as it were, with the content of the physical universe, is replaced by a conception in which the structure of space results from the laws interrelating this content. Our further discussion will show that this indeed is the way along which, to-day, mathematical thought must move in order to cope with universal reality.

chapter_12_text

c12p21

Through conceiving Euclidean and polar-Euclidean space in this manner it becomes clear that they are nothing else than the geometrical expression of the relationship between gravity and levity. For gravity, through its field spreading outward from an inner centre, establishes a point-to-point relation between all things under its sway; whereas levity draws all things within its domain into common plane-relations by establishing field-conditions wherein action takes place from the periphery towards the centre. What distinguishes in both cases the plane at infinity from all other planes may be best described by calling it the all-embracing plane; correspondingly the point at infinity may be best described as the all-relating point.

chapter_12_text

c12p37

In Euclidean geometry the sphere is defined as ‘the locus of all points which are equidistant from a given point’. To define the sphere in this way is in accord with our post-natal, gravity-bound consciousness. For in this state our mind can do no more than envisage the surface of the sphere point by point from its centre and recognize the equal distance of all these points from the centre. Seen thus, the sphere arises as the sum-total of the end-points of all the straight lines of equal length which emerge from the centre-point in all directions. Fig. 8 indicates this schematically. Here the radius, a straight line, is clearly the determining factor.

chapter_12_text

c12p5

However, for reasons discussed earlier, Einstein was forced to conceive all events in the universe after the model of gravity as observable on the earth. In this way he arrived at a space-structure which possesses neither the three-dimensionality nor the rectilinear character of so-called Euclidean space – a space-picture which, though mathematically consistent, is incomprehensible by the human mind. For nothing exists in our mind that could enable us to experience as a reality a space-time continuum of three dimensions which is curved within a further dimension.

chapter_12_text

c12p22

In outer nature the all-embracing plane is as much the ‘centre’ of the earth’s field of levity as the all-relating point is the centre of her field of gravity. All actions of dynamic entities, such as that of the ur-plant and its subordinate types, start from this plane. Seeds, eye-formations, etc., are nothing but individual all-relating points in respect of this plane. All that springs from such points does so because of the point’s relation to the all-embracing plane. This may suffice to show how realistic are the mathematical concepts which we have here tried to build up.

chapter_12_text

c12p38

We now move to the other pole of the primary polarity, that is to the plane, and let the sphere arise by imagining the plane approaching an infinitely distant point evenly from all sides. We view the process realistically only by imagining ourselves in the plane, so that we surround the point from all sides, with the distance between us and

chapter_12_text

c12p6

This outcome of Einstein’s endeavours results from the fact that he tried by means of gravity-bound thought to comprehend universal happenings of which the true causes are non-gravitational. A thinking that has learnt to acknowledge the existence of levity must indeed pursue precisely the opposite direction. Instead of freezing time down into spatial dimension, in order to make it fit into a world ruled by nothing but gravity, we must develop a conception of space sufficiently fluid to let true time have its place therein. We shall see how such a procedure will lead us to a space-concept thoroughly conceivable by human common sense, provided we are prepared to overcome the onlooker-standpoint in mathematics also.