chapter_8_text

c8p15

What the zero signifies becomes clear directly we start to work with thermometers not marked with scales. For in order to be used in this form as real thermometers, they must be exposed on each occasion first of all to some zero level of temperature, say, that of melting ice. If we then take them into the region of temperature we want to measure, we shall discern the difference of levels through the corresponding movement of the column. The final position of the column tells us nothing in itself. It is always the change from one level to another that the thermometer registers – precisely as does the sense of warmth in our hands in the experiment just described.

chapter_8_text

c8p31

The conception of ‘force’ as the product of ‘mass’ and ‘acceleration’ is based on the fact – easily experienced by anyone who cycles along a level road – that it is not velocity itself which requires the exertion of force, but the change of velocity – that is, acceleration or retardation (‘negative acceleration’ in the sense of mathematical physics); also that in the case of equal accelerations, the force depends upon the mass of the accelerated object. The more massive the object, the greater will be the force necessary for accelerating it. This mass, in turn, reveals itself in the resistance a particular object offers to any change of its state of motion. Where different accelerations and the same mass are considered, the factor m in the above formula remains constant, and force and acceleration are directly proportional to each other. Thus in the acceleration is discovered a measure for the magnitude of the force which thereby acts.

chapter_8_text

c8p47

What we designate as acceleration, and measure as such, is nothing else than a numerical factor comparing two different conditions of force within the physical-material world.

chapter_8_text

c8p63

If this is the truth concerning the origin of our knowledge of force and its behaviour on the one hand, and our capacity to conceive mathematical concepts in a purely ideal way on the other, what is it then that causes man to dwell in such illusion as regards the relationship between the two? From our account it follows that no illusion of this kind could arise if we were able to remember throughout life our experiences in early childhood. Now we know from our considerations in Chapter VI that in former times man had such a memory. In those times, therefore, he was under no illusion as to the reality of force in the world. In the working of outer forces he saw a manifestation of spiritual beings, just as in himself he experienced force as a manifestation of his own spiritual being. We have seen also that this form of memory had to fade away to enable man to find himself as a self-conscious personality between birth and death. As such a personality, Galileo was able to think the parallelogram of forces, but he was unable to comprehend the origin of his faculty of mathematical thinking, or of his intuitive knowledge of the mathematical behaviour of nature in that realm of hers where she sets physical forces into action.

chapter_8_text

c8p16

Hence we see that in the ordinary operation with the thermometers, and when we use our hands in the prescribed manner, we are dealing with the zero level in two quite different ways. While in the/two instruments the zero level is the same, in accordance with the whole idea of thermometric measurement, we make a special arrangement so as to expose our hands to two different levels. So we need not be surprised if these two ways yield different results. If, after placing two thermometers without scales in hot and cold water, we were to assign to each its own zero in accordance with the respective height of its column, and then graduate them from this reference point, they would necessarily record different levels when exposed to the tepid water, in just the same way as the hands do. Our two hands, moreover, will receive the same sense-impression from the tepid water, if we keep them in it long enough.

chapter_8_text

c8p32

Now it is logically evident that the theorem of the parallelogram of velocities is equally valid for movements with constant or variable velocities. Even though it is somewhat more difficult to perceive mentally the movement of a point in two different directions with two differently accelerated motions, and to form an inner conception of the resulting movement, we are nevertheless still within a domain which may be fully embraced by thought. Thus accelerated movements and movements under constant velocity can be resolved and combined according to the law of the parallelogram of movements, a law which is fully attainable by means of logical thought.

chapter_8_text

c8p48

Only when we give the three factors in our equation this meaning, does it express some concrete outer reality. At the same time it forbids the use of this equation for a logical derivation of the parallelogram of forces from that of pure velocities.

*
chapter_8_text

c8p64

Deep below in Galileo’s soul there lived, as it does in every human being, the intuitive knowledge, acquired in early childhood, that part of nature’s order is recordable in the conceptual language of mathematics. In order that this intuition should rise sufficiently far into his conscious mind to guide him, as it did, in his observations, the veil of oblivion which otherwise separates our waking consciousness from the experiences of earliest childhood must have been momentarily lightened. Unaware of all this, Galileo was duly surprised when in the onlooker-part of his being the truth of his intuition was confirmed in a way accessible to it, namely through outer experiment. Yet with the veil immediately darkening again the onlooker soon became subject to the illusion that for his recognition of mathematics as a means of describing nature he was in need of nothing but what was accessible to him on the near side of the veil.

chapter_8_text

c8p17

Seen in this light, the original experiment, designed to show the subjective character of the impressions gained through the sense of warmth, reveals itself as a piece of self-deception by the onlooker-consciousness. The truth of the matter is that, in so far as there is any subjective element in the experience and measurement of heat, it does not lie on the side of our sense of warmth, but in our judgment of the significance of thermometrical readings. In fact, our test of the alleged proof of the absolute superiority of pointer-readings over the impressions gained by our senses gives us proof of the correctness of Goethe’s statement, quoted earlier, that the senses do not deceive, but the judgment deceives.